By Topic

Current Sensing for Automotive Electronics—A Survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patel, A. ; Dow Chem. Co., Houston, TX, USA ; Ferdowsi, M.

Current sensing is widely used in power electronic applications such as dc-dc power converters and adjustable-speed motor drives. Such power converters are the basic building blocks of drivetrains in electric, hybrid, and plug-in hybrid electric vehicles. The performance and control of such vehicles depend on the accuracy, bandwidth, and efficiency of its sensors. Various current-sensing techniques based on different physical effects such as Faraday's induction law, Ohm's law, Lorentz force law, the magnetoresistance effect, and the magnetic saturation effect are described in this paper. Each technique is reviewed and examined. The current measurement methods are compared and analyzed based on their losslessness, simplicity, and ease of implementation.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 8 )