Cart (Loading....) | Create Account
Close category search window
 

Interactive feature extraction and tracking by utilizing region coherency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muelder, C. ; Univ. of California, Davis, CA ; Kwan-Liu Ma

The ability to extract and follow time-varying flow features in volume data generated from large-scale numerical simulations enables scientists to effectively see and validate modeled phenomena and processes. Extracted features often take much less storage space and computing resources to visualize. Most feature extraction and tracking methods first identify features of interest in each time step independently, then correspond these features in consecutive time steps of the data. Since these methods handle each time step separately, they do not use the coherency of the feature along the time dimension in the extraction process. In this paper, we present a prediction-correction method that uses a prediction step to make the best guess of the feature region in the subsequent time step, followed by growing and shrinking the border of the predicted region to coherently extract the actual feature of interest. This method makes use of the temporal-space coherency of the data to accelerate the extraction process while implicitly solving the tedious correspondence problem that previous methods focus on. Our method is low cost with very little storage overhead, and thus facilitates interactive or runtime extraction and visualization, unlike previous methods which were largely suited for batch-mode processing due to high computational cost.

Published in:

Visualization Symposium, 2009. PacificVis '09. IEEE Pacific

Date of Conference:

20-23 April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.