By Topic

Adaptive Nonlinear System Identification in the Short-Time Fourier Transform Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Avargel, Y. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Cohen, I.

In this paper, we introduce an adaptive algorithm for nonlinear system identification in the short-time Fourier transform (STFT) domain. The adaptive scheme consists of a parallel combination of a linear component, represented by crossband filters between subbands, and a quadratic component, which is modeled by multiplicative cross-terms. We adaptively update the model parameters using the least-mean-square (LMS) algorithm, and derive explicit expressions for the transient and steady-state mean-square error (MSE) in frequency bins for white Gaussian inputs. We show that estimation of the nonlinear component improves the MSE performance only when the power ratio of nonlinear to linear components is relatively high. Furthermore, as the number of crossband filters increases, a lower steady-state MSE may be obtained at the expense of slower convergence. Experimental results support the theoretical derivations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 10 )