By Topic

Improved Understanding of Soil Surface Roughness Parameterization for L-Band Passive Microwave Soil Moisture Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Panciera, R. ; Civil & Environ. Eng., Univ. of Melbourne, Melbourne, VIC, Australia ; Walker, J.P. ; Merlin, O.

Surface roughness parameterization plays an important role in soil moisture retrieval from passive microwave observations. This letter investigates the parameterization of surface roughness in the retrieval algorithm adopted by the Soil Moisture and Ocean Salinity mission, making use of experimental airborne and ground data from the National Airborne Field Experiment held in Australia in 2005. The surface roughness parameter is retrieved from high-resolution (60 m) airborne data in different soil moisture conditions, using the ground soil moisture as input of the model. The effect of surface roughness on the emitted signal is found to change with the soil moisture conditions with a law different from that proposed in previous studies. The magnitude of this change is found to be related to soil textural properties: in clay soils, the effect of surface roughness is higher in intermediate wetness conditions (0.2-0.3 v/v) and decreases on both the dry and wet ends. Consequently, this letter calls for a rethink of surface roughness parameterization in microwave emission modeling.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 4 )