By Topic

Censoring sensors: a low-communication-rate scheme for distributed detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Rago ; Dept. of Electr. & Syst. Eng., Connecticut Univ., Storrs, CT, USA ; P. Willett ; Y. Bar-Shalom

We consider a new scheme for distributed detection based on a "censoring" or "send/no-send" idea. The sensors are assumed to "censor" their observations so that each sensor sends to the fusion center only "informative" observations, and leaves those deemed "uninformative" untransmitted. The main result of this work is that with conditionally independent sensor data and under a communication rate constraint, in order to minimize the probability of error, transmission should occur if and only if the local likelihood ratio value observed by the sensor does not fall in a certain single interval. Similar results are derived from Neymarr-Pearson and distance-measure viewpoints. We also discuss simplifications for the most interesting case that the fusion center threshold is high and the communication constraint is severe. We compare censoring with the more common binary-transmission framework and observe its considerable decrease in communication needs. Finally, we explore the use of feedback to achieve optimal performance with very little communication.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:32 ,  Issue: 2 )