By Topic

Adaptive detection threshold optimization for tracking in clutter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gelfand, S.B. ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; Fortmann, Thomas E. ; Bar-Shalom, Y.

The adaptive optimization of detection thresholds for tracking in clutter is investigated for the probabilistic data association (PDA) filter. Earlier work on this problem by T.E. Fortmann et al. (1985) involved an approximate steady-state analysis of the state error covariance and is only suitable for time-invariant systems. Furthermore, the method requires numerous assumptions and approximations about the error covariance update equation, and uses a cumbersome graphical optimization algorithm. In this work we propose two adaptive schemes for threshold optimization, namely prior and posterior optimization algorithms which minimize the mean-square state estimation error over detection thresholds which depend on data up to the previous and current time-step, respectively. These algorithm are suitable for real-time implementation in time-varying systems. Some simulation results are presented.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:32 ,  Issue: 2 )