By Topic

Current-source parallel-resonant DC/AC inverter with transformer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kazimierczuk, M.K. ; Dept. of Electr. Eng., Wright State Univ., Dayton, OH, USA ; Cravens, R.C.

This paper gives the theory and experimental results for a current-source parallel-resonant inverter with a transformer used to change voltage levels and provide isolation. The analysis is performed in the frequency domain using Fourier series techniques to predict output power, efficiency, DC-to-AC voltage transfer function, and component voltage and current stresses. The inverter consists of two switches, a large choke inductor, a transformer, and a parallel-resonant circuit. The magnetizing inductance of the transformer is used as the inductance of the parallel-resonant circuit, thereby requiring one less component. Each switch consists of a MOSFET in series with a diode. The MOSFETs have their sources grounded so there is no need for a complicated gate-drive circuit. An inverter was designed and constructed. The DC input voltage was 156 V and the output voltage was a sine wave with a peak value of 224 V at an operating frequency of 50 kHz. The output power at full load was 100 W

Published in:

Power Electronics, IEEE Transactions on  (Volume:11 ,  Issue: 2 )