By Topic

Estimation of Terrain Forces and Parameters for Rigid-Wheeled Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ray, L.E. ; Thayer Sch. of Eng., Dartmouth Coll., Hanover, NH

This paper provides a methodology for the estimation of resistance, thrust, and resistive torques on each wheel of a rigid-wheeled vehicle generated at the vehicle-terrain interface, and from these forces and moments, a methodology to estimate terrain parameters is presented. Terrain force estimation, which is independent of a terrain model, can infer the ability to accelerate, climb, or tow a load independent of the underlying terrain properties. When a terrain model is available, parameters of that model, such as soil cohesion, friction angle, maximum normal stress, and stress distribution parameters, are determined from estimated vehicle-terrain forces using a multiple-model estimation approach, providing parameters that relate to accepted mobility metrics. The methodology requires a standard proprioceptive sensor suite-accelerometers, rate gyros, wheel speeds, motor torques, and ground speed. Sinkage sensors are not required. Simulation results demonstrate efficacy of the method on three terrains spanning a range of soil cohesions reported in the literature.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 3 )