By Topic

Structural Dynamics Modification of Slim Optical Disk Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kyungtae Kim ; Dept. of Mech. Eng., Yonsei Univ., Seoul ; Seungho Lim ; No-Cheol Park ; Young-Pil Park
more authors

This paper explores the dynamic characteristics of slim optical disk drives and the modification of their structural dynamics to reduce vibration using a simplified finite-element (FE) model. The FE model was constructed using simplified geometry and valid element types that effectively reflect the dynamic characteristics. The FE model was verified by experimental modal analysis (EMA). Design parameters were extracted and selected to modify the structural dynamics using design of experiments, topology optimization, and modal strain energy distribution. A prototype of the modified model was constructed and its anti-vibration performance was estimated using EMA and comparison of frequency response function.

Published in:

IEEE Transactions on Magnetics  (Volume:45 ,  Issue: 5 )