By Topic

Pareto-Efficient and Goal-Driven Power Control in Wireless Networks: A Game-Theoretic Approach With a Novel Pricing Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mehdi Rasti ; Dept. of Electr. & Comput. Eng., Tarbiat Modares Univ., Tehran ; Ahmad R. Sharafat ; Babak Seyfe

A Pareto-efficient, goal-driven, and distributed power control scheme for wireless networks is presented. We use a noncooperative game-theoretic approach to propose a novel pricing scheme that is linearly proportional to the signal-to-interference ratio (SIR) and analytically show that with a proper choice of prices (proportionality constants), the outcome of the noncooperative power control game is a unique and Pareto-efficient Nash equilibrium (NE). This can be utilized for constrained-power control to satisfy specific goals (such as fairness, aggregate throughput optimization, or trading off between these two goals). For each one of the above goals, the dynamic price for each user is also analytically obtained. In a centralized (base station) price setting, users should inform the base station of their path gains and their maximum transmit-powers. In a distributed price setting, for each goal, an algorithm for users to update their transmit-powers is also presented that converges to a unique fixed-point in which the corresponding goal is satisfied. Simulation results confirm our analytical developments.

Published in:

IEEE/ACM Transactions on Networking  (Volume:17 ,  Issue: 2 )