By Topic

Face recognition using multiple interest point detectors and SIFT descriptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Fernandez ; Miguel Hernandez University, Av. Universidad s/n. 03202 Elche (Spain) ; M. A. Vicente

The use of interest point detectors and SIFT descriptors for face recognition is studied in this paper. There are two main novelties with respect to previous approaches using SIFT features. First, the use of two scale-invariant interest point detectors (namely, Harris-Laplace and difference of Gaussians) which are combined in order to detect both corner-like structures and blob-like structures in face images. Second, the distance measure used, which takes into account both the number of matching points found between two images (according to their SIFT descriptors) and the coherence of these matches in terms of scales, orientations and spacial configuration. The results obtained with our model-based algorithm are compared with those of a classic appearance-based face recognition method (PCA) over two different face databases: the well-known AT&T database and a face database created at our university.

Published in:

Automatic Face & Gesture Recognition, 2008. FG '08. 8th IEEE International Conference on

Date of Conference:

17-19 Sept. 2008