By Topic

Optical Wireless Systems Employing Adaptive Collaborative Transmitters in an Indoor Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alattar, J.M. ; Sch. of Electron. & Electr. Eng., Univ. of Leeds, Leeds, UK ; Elmirghani, J.M.H.

We propose a novel optical wireless (OW) system based on a power adaptive multibeam spot-diffusing transmitter serving multiple seven-segment maximum ratio combining (MRC) angle diversity receivers. A feedback link is assumed between the transceivers so that each receiver conveys to the multibeam transmitter the new beams transmit power weights to be used to achieve the best signal quality at a given receiver location. Two cases involving three and five receivers are considered. Four different configurations for the placement of the three-receiver case in the room are also examined. The system's performance in each case is evaluated in terms of signal-to-noise ratio (SNR) and is compared with the single receiver scenario with and without power adaptation. In the presence of one receiver, the transmit spot powers can be adjusted for optimum performance at that receiver location. For multiple receivers, there is conflict, and we propose spot power adaptation based on the average requirements (power distribution in spots), i.e., transmit equal gain combining (EGC) of spot power or MRC of transmit spot powers. The results show that the three receivers benefit most from an adaptive transmitter when each is placed at a corner of the room. In this case, an SNR increase of as much as 2.6 dB is achieved for all three receivers at the corners by both MRC and EGC. Moreover, when all receivers are placed away from the line of diffusing spots, our proposed MRC collaborative approach is 1 dB better than the noncollaborative system. This gain reduces the difference from the upper bound set by the single receiver adaptation, which is 3 dB. For a mobile transmitter, MRC also significantly improved the SNR for the farthest receivers at the opposite end from the transmitter located near one room corner.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:59 ,  Issue: 1 )