By Topic

Hierarchical Texture-Based Segmentation of Multiresolution Remote-Sensing Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gaetano, R. ; Dept. of Biomed., Electron. & Telecommun. Eng., Univ. Federico II of Naples, Naples ; Scarpa, G. ; Poggi, G.

In this paper, we propose a new algorithm for the segmentation of multiresolution remote-sensing images, which fits into the general split-and-merge paradigm. The splitting phase singles out clusters of connected regions that share the same spatial and spectral characteristics. These clusters are then regarded as atomic elements of more complex structures, particularly textures, that are gradually retrieved during the merging phase. The whole process is based on a recently developed hierarchical model of the image, which accurately describes its textural properties. In order to reduce the computational burden and preserve contours at the highest spatial definition, the algorithm works on the high-resolution panchromatic data first, using low-resolution full spectral information only at a later stage to refine the segmentation. It is completely unsupervised, with just a few parameters set at the beginning, and its final product is not a single segmentation map but rather a sequence of nested maps which provide a hierarchical description of the image, at various scales of observations. The first experimental results, obtained on a remote-sensing Ikonos image, are very encouraging and confirm the algorithm potential.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 7 )