By Topic

Robust Adaptive Beamformers Based on Worst-Case Optimization and Constraints on Magnitude Response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhu Liang Yu ; Coll. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou ; Wee Ser ; Meng Hwa Er ; Zhenghui Gu
more authors

In this paper, novel robust adaptive beamformers are proposed with constraints on array magnitude response. With the transformation from the array output power and the magnitude response to linear functions of the autocorrelation sequence of the array weight, the optimization of an adaptive beamformer, which is often described as a quadratic optimization problem in conventional beamforming methods, is then reformulated as a linear programming (LP) problem. Unlike conventional robust beamformers, the proposed method is able to flexibly control the robust response region with specified beamwidth and response ripple. In practice, an array has many imperfections besides steering direction error. In order to make the adaptive beamformer robust against all kinds of imperfections, worst-case optimization is exploited to reconstruct the robust beamformer. By minimizing array output power with the existence of the worst-case array imperfections, the robust beamforming can be expressed as a second-order cone programming (SOCP) problem. The resultant beamformer possesses superior robustness against arbitrary array imperfections. With the proposed methods, a large robust response region and a high signal-to-interference-plus-noise ratio (SINR) enhancement can be achieved readily. Simple implementation, flexible performance control, as well as significant SINR enhancement, support the practicability of the proposed methods.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 7 )