By Topic

Nonorthogonal Joint Diagonalization by Combining Givens and Hyperbolic Rotations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Antoine Souloumiac ; Stochastic Processes & Spectra Lab., CEA Saclay, Gif-sur-Yvette

A new algorithm for computing the nonorthogonal joint diagonalization of a set of matrices is proposed for independent component analysis and blind source separation applications. This algorithm is an extension of the Jacobi-like algorithm first proposed in the joint approximate diagonalization of eigenmatrices (JADE) method for orthogonal joint diagonalization. The improvement consists mainly in computing a mixing matrix of determinant one and columns of equal norm instead of an orthogonal mixing matrix. This target matrix is constructed iteratively by successive multiplications of not only Givens rotations but also hyperbolic rotations and diagonal matrices. The algorithm performance, evaluated on synthetic data, compares favorably with existing methods in terms of speed of convergence and complexity.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 6 )