Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Using Parallel Bloom Filters for Multiattribute Representation on Network Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bin Xiao ; Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China ; Yu Hua

One widely used mechanism for representing membership of a set of items is the simple space-efficient randomized data structure known as Bloom filters. Yet, Bloom filters are not entirely suitable for many new network applications that support network services like the representation and querying of items that have multiple attributes as opposed to a single attribute. In this paper, we present an approach to the accurate and efficient representation and querying of multiattribute items using Bloom filters. The approach proposes three variant structures of Bloom filters: parallel Bloom filter (referred as PBF) structure, PBF with a hash table (PBF-HT), and PBF with a Bloom filter (PBF-BF). PBF stores multiple attributes of an item in parallel Bloom filters. The auxiliary HT and BF provide functions to capture the inherent dependency of all attributes of an item. Compared to standard Bloom filters to represent items with multiple attributes, the proposed PBF facilitates much faster query service and both PBF-HT and PBF-BF structures achieve much lower false positive probability with a result to save storage space. Simulation and experimental results demonstrate that the new space-efficient Bloom filter structures can efficiently and accurately represent multiattribute items and quickly respond queries at the cost of a relatively small false positive probability.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )