By Topic

A 1.2 V 114 mW Dual-Band Direct-Conversion DVB-H Tuner in 0.13 \mu m CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ming-Ching Kuo ; Dept. of Electron. Eng., Nat. Chiao-Tung Univ., Hsinchu ; Shiau-Wen Kao ; Chih-Hung Chen ; Tsung-Shuen Hung
more authors

A fully integrated direct-conversion tuner is implemented in 0.13 mum CMOS technology. A broadband noise-canceling balun LNA with the proposed dual cross-coupling technique helps achieve an overall receiver noise figure from 3.7 to 4.3 dB while consuming only 3.6 mW. The proposed current-mode switching scheme improves the achievable SNIR with a gain step of 15 dB, providing IIP3 improvement of 18 dB and NF degradation of only 6 dB. Moreover, design trade-offs are carefully considered in designing the baseband circuit, which provides wide gain tuning and bandwidth accuracy with a DC offset residual less than 6 mV. The measured maximum SNR values are better than 30 dB over wide input power levels, ensuring robust reception in a mobile environment. All circuit blocks are operated at 1.2 V. As a result, the tuner consumes power as low as 114 mW in the continuous mode. This compact tuner supports both UHF and L- bands, and occupies only 7.2 mm2 die area.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 3 )