By Topic

Multiattribute Choice With Ordinal Information: A Comparison of Different Decision Rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paula Sarabando ; Escola Super. de Tecnol. de Viseu, Viseu ; LuÍs CÂndido Dias

In the context of additive multiattribute aggregation, we address problems with ordinal information, i.e., considering a ranking of the weights (the scaling coefficients). Several rules for ranking alternatives in these situations have been proposed and compared, such as the rank-order-centroid weight, minimum value, central value, and maximum regret rules. This paper compares these rules, together with two rules that had never been studied (quasi-dominance and quasi-optimality) that use a tolerance parameter to extend the concepts of dominance and optimality. Another contribution of this paper is the study of the behavior of these rules in the context of selecting a subset of the most promising alternatives. This study intends to provide guidelines about which rules to choose and how to use them (e.g., how many alternatives to retain and what tolerance to use), considering the contradictory goals of keeping a low number of alternatives yet not excluding the best one. The comparisons are grounded on Monte Carlo simulations.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:39 ,  Issue: 3 )