By Topic

Hierarchical Test Sequencing for Complex Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
R. Boumen ; Dept. of Mech. Eng., Eindhoven Univ. of Technol., Eindhoven ; S. Ruan ; I. S. M. de Jong ; J. M. van de Mortel-Fronczak
more authors

Testing complex systems, such as the ASML TWINSCAN lithographic machine, is expensive and time consuming. In a previous work, a test sequencing method to calculate time-optimal test sequences has been developed. Because complex systems are composed of several subsystems, which are again composed of several modules, there exists a need to hierarchically model test sequencing problems. Such a hierarchical test sequencing problem consists of a high-level model that describes a test sequencing problem at the system level, and one or more low-level models that describe the test sequencing problems at the subsystem or module level. The tests at the system level correspond to the solutions of low-level problems. This paper describes a hierarchical test sequencing model and proposes two algorithms to compute an optimal test sequence. The benefits of hierarchically modeling a problem are less computational effort and less modeling effort, because not all relations are needed. This is illustrated by a small example. The industrial relevance of this method is illustrated on a case study related to a manufacturing testing phase of a lithographic machine.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:39 ,  Issue: 3 )