By Topic

Min-Sum Decoder Architectures With Reduced Word Length for LDPC Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daesun Oh ; Samsung Electron., Suwon, South Korea ; Keshab K. Parhi

In this paper, we propose an improvement of the normalized min-sum (MS) decoding algorithm and novel MS decoder architectures with reduced word length using nonuniform quantization schemes for low-density parity-check (LDPC) codes. The proposed normalized MS algorithm introduces a more exact adjustment with two optimized correction factors for check-node-updating computations, while the conventional normalized MS algorithm applies only one correction factor. The proposed algorithm provides a significant performance gain without any additional computation or hardware complexity. The finite word-length analysis in implementing an LDPC decoder is a very important factor since it directly impacts the size of memory to store the intrinsic and extrinsic messages and the overall hardware area in the partially parallel LDPC decoder. The proposed nonuniform quantization scheme can reduce the finite word length while achieving similar performances compared to a conventional quantization scheme. From simulation results, it is shown that the proposed 4-bit nonuniform quantization scheme achieves an acceptable decoding performance, unlike the conventional 4-bit uniform quantization scheme. Finally, the proposed MS decoder architectures by the nonuniform quantization scheme provide significant reductions of 20% and up to 8% for the memory area and combinational logic area, respectively, compared to the conventional 5-bit ones.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:57 ,  Issue: 1 )