By Topic

Optimal Pair of Minimal Paths Under Both Time and Budget Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yi-Kuei Lin ; Dept. of Ind. Manage., Nat. Taiwan Univ. of Sci. & Technol., Taipei

The quickest path (QP) problem is to find a path which sends a given amount of data from the source to the sink such that the transmission time is minimized. Two attributes are involved, namely, the capacity and the lead time. The capacity of each arc is assumed to be deterministic. However, in many real-life flow networks such as computer systems, telecommunication systems, etc., the capacity of each arc should be stochastic due to failure, maintenance, etc. Such a network is named a stochastic-flow network. Hence, the minimum transmission time is not a fixed number. We modify the QP problem to a stochastic case. The new problem is to evaluate the probability that d units of data can be sent from the source to the sink under both time T and budget B constraints. Such a probability is named the system reliability. In particular, the data can be transmitted through two disjoint minimal paths (MPs) simultaneously. A simple algorithm is proposed to generate all (d, T, B)-QPs, and the system reliability can subsequently be computed. The optimal pair of MPs with highest system reliability could further be obtained.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 3 )