By Topic

Total Power Modeling in FPGAs Under Spatial Correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hassan, H.A. ; Electr. & Comput. Eng. Dept., Univ. of Waterloo, Waterloo, ON ; Anis, M. ; Elmasry, M.

This work describes a novel approach for total power estimation in field-programmable gate arrays (FPGAs) while considering spatial correlation among the different signals in the design. The signal probabilities under spatial correlations are used to properly model the dynamic power dissipation and the state-dependency of the leakage power dissipation in the logic and routing resources of FPGAs. Moreover, the proposed model accounts for power due to glitches. The accuracy of the developed power estimation technique is compared with that of HSpice simulations and other FPGA power estimation techniques that assume spatial independence. It is found that the spatial independence assumption can overestimate power dissipation in FPGAs by an average of 19%.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:17 ,  Issue: 4 )