By Topic

Optimized Least-Square Nonuniform Fast Fourier Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jacob, M. ; Dept. of Biomed. Eng., Univ. of Rochester, Rochester, NY

The main focus of this paper is to derive a memory efficient approximation to the nonuniform Fourier transform of a support limited sequence. We show that the standard nonuniform fast Fourier transform (NUFFT) scheme is a shift invariant approximation of the exact Fourier transform. Based on the theory of shift-invariant representations, we derive an exact expression for the worst-case mean square approximation error. Using this metric, we evaluate the optimal scale-factors and the interpolator that provides the least approximation error. We also derive the upper-bound for the error component due to the lookup tablebased evaluation of the interpolator; we use this metric to ensure that this component is not the dominant one. Theoretical and experimental comparisons with standard NUFFT schemes clearly demonstrate the significant improvement in accuracy over conventional schemes, especially when the size of the uniform fast Fourier transform (FFT) is small. Since the memory requirement of the algorithm is dependent on the size of the uniform FFT, the proposed developments can lead to iterative signal reconstruction algorithms with significantly lower memory demands.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 6 )