By Topic

Markovian Search Games in Heterogeneous Spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Richard R. Brooks ; Holcombe Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC ; Jason Schwier ; Christopher Griffin

In this paper, we consider how to search for a mobile evader in a large heterogeneous region when sensors are used for detection. Sensors are modeled using probability of detection. Due to environmental effects, this probability will not be constant over the entire region. We map this problem to a graph-search problem, and even though deterministic graph search is NP-complete, we derive a tractable optimal probabilistic search strategy. We do this by defining the problem as a dynamic game played on a Markov chain. We prove that this strategy is optimal in the sense of Nash. Simulations of an example problem illustrate our approach and verify our claims.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:39 ,  Issue: 3 )