By Topic

Automated Quantitative Assessment of HER-2/neu Immunohistochemical Expression in Breast Cancer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Masmoudi, H. ; Dept. of Electr. & Comput. Eng., George Washington Univ., Washington, DC ; Hewitt, S.M. ; Petrick, N. ; Myers, K.J.
more authors

The expression of the HER-2/neu (HER2) gene, a member of the epidermal growth factor receptor family, has been shown to be a valuable prognostic indicator for breast cancer. However, interobserver variability has been reported in the evaluation of HER2 with immunohistochemistry. It has been suggested that automated computer-based evaluation can provide a consistent and objective evaluation of HER2 expression. In this manuscript, we present an automated method for the quantitative assessment of HER2 using digital microscopy. The method processes microscopy images from tissue slides with a multistage algorithm, including steps of color pixel classification, nuclei segmentation, and cell membrane modeling, and extracts quantitative, continuous measures of cell membrane staining intensity and completeness. A minimum cluster distance classifier merges the features to classify the slides into HER2 categories. An evaluation based on agreement analysis with pathologist-derived HER2 scores, showed good agreement with the provided truth. Agreement varied within the different classes with highest agreement (up to 90%) for positive (3+) slides, and lowest agreement (72%-78%) for equivocal (2+) slides which contained ambiguous scoring. The developed automated method has the potential to be used as a computer aid for the immunohistochemical evaluation of HER2 expression with the objective of increasing observer reproducibility.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 6 )