Cart (Loading....) | Create Account
Close category search window
 

MR Image Segmentation Using a Power Transformation Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Juin-Der Lee ; Inst. of Stat. Sci., Acad. Sinica, Taipei ; Hong-Ren Su ; Cheng, P.E. ; Liou, M.
more authors

This study proposes a segmentation method for brain MR images using a distribution transformation approach. The method extends traditional Gaussian mixtures expectation-maximization segmentation to a power transformed version of mixed intensity distributions, which includes Gaussian mixtures as a special case. As MR intensities tend to exhibit non-Gaussianity due to partial volume effects, the proposed method is designed to fit non-Gaussian tissue intensity distributions. One advantage of the method is that it is intuitively appealing and computationally simple. To avoid performance degradation caused by intensity inhomogeneity, different methods for correcting bias fields were applied prior to image segmentation, and their correction effects on the segmentation results were examined in the empirical study. The partitions of brain tissues (i.e., gray and white matter) resulting from the method were validated and evaluated against manual segmentation results based on 38 real T1-weighted image volumes from the Internet brain segmentation repository, and 18 simulated image volumes from BrainWeb. The Jaccard and Dice similarity indexes were computed to evaluate the performance of the proposed approach relative to the expert segmentations. Empirical results suggested that the proposed segmentation method yielded higher similarity measures for both gray matter and white matter as compared with those based on the traditional segmentation using the Gaussian mixtures approach.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.