Cart (Loading....) | Create Account
Close category search window
 

Deblocking of Block-Transform Compressed Images Using Phase-Adaptive Shifted Thresholding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wong, A. ; Syst. Design Eng., Univ. of Waterloo, Waterloo, ON ; Bishop, W.

Many popular image compression schemes are based on block-transform coding, a technique where images are broken into small blocks of pixels prior to transformation and compression. Block-transform coding often introduces blocking artifacts which are particularly prevalent at low bit-rates due to quantization errors. A novel algorithm for deblocking block-transform compressed images is proposed in this paper. This algorithm is based on a phase-adaptive, shifted thresholding technique that estimates the original uncompressed image as the weighted sum of shifted versions of the decompressed image subjected to a threshold. An efficient integer transform is used to construct the shifted versions of the decompressed image. The aggregation weights are obtained adaptively using the local phase moment characteristics of the underlying image content. The proposed algorithm utilizes important human perceptual characteristics to provide effective image deblocking while preserving image detail. Experimental results show that the proposed algorithm is more efficient than comparable methods and yields both subjective results and peak signal-to-noise ratio (PSNR) results comparable to existing methods.

Published in:

Multimedia, 2008. ISM 2008. Tenth IEEE International Symposium on

Date of Conference:

15-17 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.