By Topic

Ground deformation measurement with radar interferometry in Exupéry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoying Cong ; Remote Sensing Technology Technische Universitaet Muenchen (TUM), Munich, Germany ; Stefan Hinz ; Michael Eineder ; Alessandro Parizzi

The Exupery project funded by the German Federal Ministry of Education and Research is a multidisciplinary project aiming at setting-up an Early Response System (VFRS) for Volcanic Activity. The core of the system builds on established volcanic monitoring techniques such as seismicity, ground deformation, and remote sensing tools for gas measurements. A major novelty of this mobile system is the attempt of a direct inclusion of satellite based observations to deduce ground deformation, to detect hazardous gas emissions and to monitor thermal activity. Within the project, the study group at the Technical University of Munich and at the German Aerospace Center DLR is responsible for ground deformation measurements with satellite observations. Millimetric subsidence or uplift can be retrieved from SAR images by using interferometric techniques. The multi-frequency SAR data-set used for the test sites include three different sorts of band data, X-, C- and L-Band, respectively. Azores (Portugal) and Stromboli (Italy) were chosen for the test sites. The volcanic movements were measured with the differential phases and the measurement accuracy will be compared with on site measurements including GPS and ground based DInSAR measurements later for field campaign in Azores. The estimated deformation will be then incorporated into geophysical stress models to initialize, calibrate and, ultimately, improve the models. Our presentation gives a short overview of the Exupery project and presents first results from multi-wavelength InSAR data and different processing techniques such as PSI.

Published in:

2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas

Date of Conference:

11-14 Nov. 2008