By Topic

A Novel Wall Climbing Robot Based on Bernoulli Effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wagner, M. ; Tech. Univ. of Munich, Munich ; Xiaoqi Chen ; Nayyerloo, M. ; Wenhui Wang
more authors

It is a challenge for mobile robots to climb a vertical wall primarily due to requirements for reliable locomotion, high manoeuvrability, and robust and efficient attachment and detachment. Such robots have immense potential to automate tasks which are currently accomplished manually, offering an extra degree of human safety in a cost effective manner. In contrast to vacuum suction, magnetic adhesion, and dry techniques used existing wall climbing robots, Canterbury's research effort focuses on a novel approach which achieves attachment and detachment based on Bernoulli effect. The adhesion force is achieved on a variety of surfaces, independent on the material of the wall and surface conditions. Such ubiquitous mobility with a force/weight ratio as high as 5 is nearly impossible to be achieved by other adhesion methods.

Published in:

Mechtronic and Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International Conference on

Date of Conference:

12-15 Oct. 2008