By Topic

Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Per-Simon Kildal ; Chalmers Univ. of Technol., Gothenburg ; E. Alfonso ; A. Valero-Nogueira ; Eva Rajo-Iglesias

This letter presents a new metamaterial-based waveguide technology referred to as ridge gap waveguides. The main advantages of the ridge gap waveguides compared to hollow waveguides are that they are planar and much cheaper to manufacture, in particular at high frequencies such as for millimeter and sub- millimeter waves. The latter is due to the fact that there are no mechanical joints across which electric currents must float. The gap waveguides have lower losses than microstrip lines, and they are completely shielded by metal so no additional packaging is needed, in contrast to the severe packaging problems associated with microstrip circuits. The gap waveguides are realized in a narrow gap between two parallel metal plates by using a texture or multilayer structure on one of the surfaces. The waves follow metal ridges in the textured surface. All wave propagation in other directions is prohibited (in cutoff) by realizing a high surface impedance (ideally a perfect magnetic conductor) in the textured surface at both sides of all ridges. Thereby, cavity resonances do not appear either within the band of operation. The present letter introduces the gap waveguide and presents some initial simulated results.

Published in:

IEEE Antennas and Wireless Propagation Letters  (Volume:8 )