By Topic

Automatic Inference and Enforcement of Kernel Data Structure Invariants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baliga, A. ; Dept. of Comput. Sci., Rutgers Univ., NJ ; Ganapathy, V. ; Iftode, L.

Kernel-level rootkits affect system security by modifying key kernel data structures to achieve a variety of malicious goals. While early rootkits modified control data structures, such as the system call table and values of function pointers, recent work has demonstrated rootkits that maliciously modify non-control data. Prior techniques for rootkit detection fail to identify such rootkits either because they focus solely on detecting control data modifications or because they require elaborate, manually-supplied specifications to detect modifications of non-control data. This paper presents a novel rootkit detection technique that automatically detects rootkits that modify both control and non-control data. The key idea is to externally observe the execution of the kernel during a training period and hypothesize invariants on kernel data structures. These invariants are used as specifications of data structure integrity during an enforcement phase; violation of these invariants indicates the presence of a rootkit. We present the design and implementation of Gibraltar, a tool that uses the above approach to infer and enforce invariants. In our experiments, we found that Gibraltar can detect rootkits that modify both control and non-control data structures, and that its false positive rate and monitoring overheads are negligible.

Published in:

Computer Security Applications Conference, 2008. ACSAC 2008. Annual

Date of Conference:

8-12 Dec. 2008