By Topic

Mechanical vibrations energy harvesting and power management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present in this paper our different steps to develop an efficient integrated mechanical vibration energy harvesting system. We start with a macroscopic structure having a 100 g of moving mass to demonstrate the feasibility of a fully functional electrostatic transduction. An available output power of 16 muW per gram of mobile mass and per Hz over a large frequency band (20-100 Hz) has been obtained with a global efficiency of 60 %. A relative displacement close to the gap value increases the efficiency. To approach that, we introduce a non-linearity in the beams used as springs and guidance with the property to be very flexible for low displacements in order to amplify them and to be very hard for high displacements in order to reduce them. We developed a 10 g structure to validate it. Finally we present the design of an integrated structure able to multiply and maximize the capacitance variation independently of the vibration source. To finish, we present our concept in term of power management.

Published in:

Sensors, 2008 IEEE

Date of Conference:

26-29 Oct. 2008