Cart (Loading....) | Create Account
Close category search window
 

Routing and wavelength assignment in all-optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramaswami, R. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Sivarajan, K.N.

Considers routing connections in a reconfigurable optical network using WDM. Each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, such that connections whose paths share a common link in the network are assigned different wavelengths. The authors derive an upper bound on the carried traffic of connections (or equivalently, a lower bound on the blocking probability) for any routing and wavelength assignment (RWA) algorithm in such a network. The bound scales with the number of wavelengths and is achieved asymptotically (when a large number of wavelengths is available) by a fixed RWA algorithm. The bound can be used as a metric against which the performance of different RWA algorithms can be compared for networks of moderate size. The authors illustrate this by comparing the performance of a simple shortest-path RWA (SP-RWA) algorithm via simulation relative to the bound. They also derive a similar bound for optical networks using dynamic wavelength converters, which are equivalent to circuit-switched telephone networks, and compare the two cases. Finally, they quantify the amount of wavelength reuse achievable in large networks using the SP-RWA via simulation as a function of the number of wavelengths, number of edges, and number of nodes for randomly constructed networks as well as de Bruijn networks. They also quantify the difference in wavelength reuse between two different optical node architectures

Published in:

Networking, IEEE/ACM Transactions on  (Volume:3 ,  Issue: 5 )

Date of Publication:

Oct 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.