By Topic

Using Language to Learn Structured Appearance Models for Image Annotation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Given an unstructured collection of captioned images of cluttered scenes featuring a variety of objects, our goal is to simultaneously learn the names and appearances of the objects. Only a small fraction of local features within any given image are associated with a particular caption word, and captions may contain irrelevant words not associated with any image object. We propose a novel algorithm that uses the repetition of feature neighborhoods across training images and a measure of correspondence with caption words to learn meaningful feature configurations (representing named objects). We also introduce a graph-based appearance model that captures some of the structure of an object by encoding the spatial relationships among the local visual features. In an iterative procedure, we use language (the words) to drive a perceptual grouping process that assembles an appearance model for a named object. Results of applying our method to three data sets in a variety of conditions demonstrate that, from complex, cluttered, real-world scenes with noisy captions, we can learn both the names and appearances of objects, resulting in a set of models invariant to translation, scale, orientation, occlusion, and minor changes in viewpoint or articulation. These named models, in turn, are used to automatically annotate new, uncaptioned images, thereby facilitating keyword-based image retrieval.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:32 ,  Issue: 1 )