By Topic

Modeling Orbit Dynamics of FORMOSAT-3/COSMIC Satellites for Recovery of Temporal Gravity Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheinway Hwang ; Dept. of Civil Eng., Nat. Chiao Tung Univ., Hsinchu ; Ting-Jung Lin ; Tzu-Pang Tseng ; Benjamin Fong Chao

The precise GPS high-low tracking data from the joint Taiwan-USA mission FORMOSAT-3/COSMIC (COSMIC) can be used for gravity recovery. The current orbital accuracy of COSMIC kinematic orbit is 2 cm and is better than 1 cm for 60-s normal points. We model the perturbing forces acting on the COSMIC spacecraft based on standard models of orbit dynamics. The major tool for the numerical work of force modeling is NASA Goddard's GEODYN II software. Considering that COSMIC spacecraft are not equipped with accelerometers, the accelerations due to atmospheric drag, solar radiation pressure, and other minor surface forces are modeled by estimating relevant parameters over one orbital period from COSMIC's kinematic and reduced dynamic orbits. We carry out experimental solutions of time-varying geopotential coefficients using one month of COSMIC kinematic orbits (August 2006). With the nongravity origin forces properly modeled by GEODYN II, residual orbital perturbations (difference between kinematic and reference orbits) are assumed to be linear functions of time-varying geopotential coefficients and are used as observations to estimate the latter. Both COSMIC and combined COSMIC and GRACE gravity solutions are computed. The COSMIC solution shows some well-known temporal gravity signatures but contains artifacts. The combined COSMIC and GRACE solution enhances some local temporal gravity signatures in the GRACE solution.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:46 ,  Issue: 11 )