By Topic

Carbon Nanotube Vacuum Gauges With Wide Dynamic Range

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kaul, Anupama B. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA ; Manohara, Harish M.

Carbon-nanotube-based vacuum gauges have been developed and characterized, which primarily utilize the thermal conductivity principle. The vacuum gauges, comprising 5- to 10-mu m-long single-walled nanotubes contacted on either end with Au/Cr electrodes, have been shown to operate at low power (nanowatts to microwatts) and exhibit a wide dynamic range from 760 to 10-6 torr. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO 2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward higher vacuums. Results are compared to a conventional thin-film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:8 ,  Issue: 2 )