Cart (Loading....) | Create Account
Close category search window
 

Effective IR-drop reduction in at-speed scan testing using distribution-controlling X-Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Miyase, K. ; Kyushu Inst. of Technol., Iizuka ; Noda, K. ; Ito, H. ; Hatayama, K.
more authors

Test data modification based on test relaxation and X-filling is the preferable approach for reducing excessive IR-drop in at-speed scan testing to avoid test-induced yield loss. However, none of the existing test relaxation methods can control the distribution of identified donpsilat care bits (X-bits), thus adversely affecting the effectiveness of IR-drop reduction. In this paper, we propose a novel test relaxation method, called Distribution-Controlling X-Identification (DC-XID), which controls the distribution of X-bits identified from a set of fully-specified test vectors for the purpose of effectively reducing IR-drop. Experimental results on large industrial circuits demonstrate the effectiveness and practicality of the proposed method in reducing IR-drop, without any impact on fault coverage, test data volume, or test circuit size.

Published in:

Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on

Date of Conference:

10-13 Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.