By Topic

Stability analysis of cascaded converters for bidirectional power flow applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnamurthy, H. ; Arizona State Univ., Tempe, AZ ; Ayyanar, R.

This paper establishes the criteria to ensure stable operation of two-stage, bidirectional, isolated AC-DC converters. The bi-directional converter is analyzed in the context of a building block module (BBM) that enables a fully modular architecture for universal power flow conversion applications (AC-DC, DC-AC and DC-DC). The BBM consists of independently controlled AC-DC and isolated DC-DC converters that are cascaded for bidirectional power flow applications. The cascaded converters have different control objectives in different directions of power flow. This paper discusses methods to obtain the appropriate input and output impedances that determine stability in the context of bi-directional AC-DC power conversion. Design procedures to ensure stable operation with minimal interaction between the cascaded stages are presented. The analysis and design methods are validated through extensive simulation and hardware results.

Published in:

Telecommunications Energy Conference, 2008. INTELEC 2008. IEEE 30th International

Date of Conference:

14-18 Sept. 2008