Cart (Loading....) | Create Account
Close category search window
 

Theoretical studies and efficient algorithm of semi-blind ICI equalization for OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hsiao-Chun Wu ; Dept. of Electr. & Comput. Eng., Louisiana State Univ., Baton Rouge, LA ; Xiaozhou Huang ; Yiyan Wu ; Xianbin Wang

The intercarrier interference (ICI) due to the Doppler frequency shift, sampling clock offset, time-varying multipath fading and local oscillator frequency offset becomes the major difficulty for the data transmission via the wireless orthogonal frequency division multiplexing (OFDM) systems. The existing ICI mitigation schemes involve the frequency-domain channel estimation/equalization or the additional coding and therefore require the pilot symbols which reduce the throughput. The frequency-domain channel estimation/equalization relies on the huge matrix inversion with high computational complexity especially for the OFDM technologies possessing many subcarriers such as digital video broadcasting (DVB) systems and wireless metropolitan-area networks (WMAN). In our previous work, we proposed a semi-blind ICI equalization scheme using the joint multiple matrix diagonalization (JMMD) algorithm and empirically showed that the proposed method significantly improved the symbol error rates for QPSK- and 16QAM-OFDM systems. In this paper, we discuss the sufficient condition for the theoretical ICI equalizability and also propose an alternative semi-blind ICI equalization method based on the joint approximate diagonalization of eigen-matrices (JADE) algorithm, which is much more computationally efficient than our previous method.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 10 )

Date of Publication:

October 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.