By Topic

Limitations of Principal Components Analysis for Hyperspectral Target Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prasad, S. ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS ; Bruce, L.M.

Dimensionality reduction is a necessity in most hyperspectral imaging applications. Tradeoffs exist between unsupervised statistical methods, which are typically based on principal components analysis (PCA), and supervised ones, which are often based on Fisher's linear discriminant analysis (LDA), and proponents for each approach exist in the remote sensing community. Recently, a combined approach known as subspace LDA has been proposed, where PCA is employed to recondition ill-posed LDA formulations. The key idea behind this approach is to use a PCA transformation as a preprocessor to discard the null space of rank-deficient scatter matrices, so that LDA can be applied on this reconditioned space. Thus, in theory, the subspace LDA technique benefits from the advantages of both methods. In this letter, we present a theoretical analysis of the effects (often ill effects) of PCA on the discrimination power of the projected subspace. The theoretical analysis is presented from a general pattern classification perspective for two possible scenarios: (1) when PCA is used as a simple dimensionality reduction tool and (2) when it is used to recondition an ill-posed LDA formulation. We also provide experimental evidence of the ineffectiveness of both scenarios for hyperspectral target recognition applications.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 4 )