Cart (Loading....) | Create Account
Close category search window
 

Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mestre, X. ; Catalunya Pare Mediterrani de la Tecnol., Centre Tecnol. de Telecomunicacions de Catalunya, Barcelona

The problem of estimating the eigenvalues and eigenvectors of the covariance matrix associated with a multivariate stochastic process is considered. The focus is on finite sample size situations, whereby the number of observations is limited and comparable in magnitude to the observation dimension. Using tools from random matrix theory, and assuming a certain eigenvalue splitting condition, new estimators of the eigenvalues and eigenvectors of the covariance matrix are derived, that are shown to be consistent in a more general asymptotic setting than the traditional one. Indeed, these estimators are proven to be consistent, not only when the sample size increases without bound for a fixed observation dimension, but also when the observation dimension increases to infinity at the same rate as the sample size. Numerical evaluations indicate that the estimators have an excellent performance in small sample size scenarios, where the observation dimension and the sample size are comparable in magnitude.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.