Cart (Loading....) | Create Account
Close category search window
 

On the computational model of a kind of deconvolution problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zou Mou-Yan ; Lehrstuhl fur Allgemeine und Theor. Elektrotech., Erlangen-Nurnberg Univ., Germany ; Unbehauen, R.

It is known that discretization of a continuous deconvolution problem can alleviate the ill-posedness of the problem. The currently used circulant matrix model, however, does not play such a role. Moreover, the approximation of deconvolution problems by circulant matrix model is rational only if the size of the kernel function is very small. We propose an aperiodic model of deconvolution. For discrete and finite deconvolution problems the new model is an exact one. In the general case, the new model can lead to a nonsingular system of equations that has a lower condition number than the circulant one, and the related computations in the deconvolution can be done efficiently by means of the DFT technique, as in the ease for circulant matrices. The rationality of the new model holds without regard to the size of the kernel and the image. The use of the aperiodic model is illustrated by gradient-based algorithms

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 10 )

Date of Publication:

Oct 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.