By Topic

A new energy optimizing control strategy for switched reluctance motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kjaer, P.C. ; Dept. of Electron. & Electr. Eng., Glasgow Univ., UK ; Nielsen, P. ; Andersen, L. ; Blaabjerg, F.

This paper describes a new and machine-independent method to minimize the energy consumption of a speed controlled switched reluctance motor (SRM). The control strategy is to vary the duty cycle of the applied DC voltage in order to obtain the desired speed quickly and when operating in steady-state vary the turn-on angle (aon) of the phase voltage to minimize the energy consumption. The power flow is measured in the DC-link and used to control the turn-on angle. Simulations carried out on a three-phase 6/4 pole SRM justify the algorithm and the physical implementation in a Siemens SAB 80C517A microcontroller is described. Measurements on two different load systems show it is possible to minimize the energy consumption on-line in a speed controlled switched reluctance motor without losing the dynamic performance. A comparison with an ordinary mode-shift controlled SRM shows more than an 8% increase in overall efficiency for some operation points. The algorithm is fully applicable to other switched reluctance motors at other power levels or with other pole configurations

Published in:

Industry Applications, IEEE Transactions on  (Volume:31 ,  Issue: 5 )