By Topic

Intelligent Electronic Nose Systems for Fire Detection Systems Based on Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fujinaka, T. ; Grad. Sch. of Eng., Osaka Prefecture Univ., Sakai ; Yoshioka, M. ; Omatu, S. ; Kosaka, T.

In this paper, an intelligent electronic nose (EN)system designed using cheap metal oxide gas sensors (MOGS) is designed to detect fires at an early stage. The time series signals obtained from the same source of fire are highly correlated, and different sources of fire exhibit unique patterns in the time series data. Therefore, the error back propagation (BP) method can be effectively used for the classification of the tested smell. The accuracy of 99.6% is achieved by using only a single training dataset from each source of fire. The accuracy achieved with the k-means algorithm is 98.3%, which also shows the high ability of the EN in detecting the early stage of fire from various sources.

Published in:

Advanced Engineering Computing and Applications in Sciences, 2008. ADVCOMP '08. The Second International Conference on

Date of Conference:

Sept. 29 2008-Oct. 4 2008