By Topic

Radar Bistatic Configurations for Soil Moisture Retrieval: A Simulation Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pierdicca, N. ; Dept. of Electron. Eng., Sapienza Univ. of Rome, Rome ; Pulvirenti, L. ; Ticconi, F. ; Brogioni, M.

The possible contribution of bistatic radar measurements for bare soil moisture retrieval is investigated in this paper. A simulation study based on well-established electromagnetic models of rough surface scattering (both coherent and incoherent components) has been accomplished for this purpose. The retrieval accuracy has been evaluated by using both the Cramer-Rao lower bound and the error variance of a linear regression estimator, thus considering slightly different assumptions on retrieval conditions. Both methods have allowed us to identify the optimal system configurations in terms of observation directions, polarizations, and frequency. This identification has been carried out for single-polarization and multipolarization receivers and for the case in which bistatic measurements are complemented by monostatic ones, which are expected to be available through already-existing spaceborne synthetic aperture radars. The optimal systems have first been singled out by considering a Gaussian autocorrelation function (ACF) and a constant value of correlation length. Successively, the simulations for an exponential ACF and a variable correlation length have been analyzed, demonstrating that the results substantially remain the same. The comparison between the soil moisture estimation accuracy yielded by the optimal configurations and that provided by the standard monostatic radar has shown that a significant improvement in the quality of retrieval can be achieved by complementing bistatic and monostatic measurements.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 10 )