By Topic

IMORL: Incremental Multiple-Object Recognition and Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haibo He ; Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ ; Sheng Chen

This paper proposes an incremental multiple-object recognition and localization (IMORL) method. The objective of IMORL is to adaptively learn multiple interesting objects in an image. Unlike the conventional multiple-object learning algorithms, the proposed method can automatically and adaptively learn from continuous video streams over the entire learning life. This kind of incremental learning capability enables the proposed approach to accumulate experience and use such knowledge to benefit future learning and the decision making process. Furthermore, IMORL can effectively handle variations in the number of instances in each data chunk over the learning life. Another important aspect analyzed in this paper is the concept drifting issue. In multiple-object learning scenarios, it is a common phenomenon that new interesting objects may be introduced during the learning life. To handle this situation, IMORL uses an adaptive learning principle to autonomously adjust to such new information. The proposed approach is independent of the base learning models, such as decision tree, neural networks, support vector machines, and others, which provide the flexibility of using this method as a general learning methodology in multiple-object learning scenarios. In this paper, we use a neural network with a multilayer perceptron (MLP) structure as the base learning model and test the performance of this method in various video stream data sets. Simulation results show the effectiveness of this method.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 10 )