By Topic

Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Adrien Angeli ; Univ. Pierre et Marie Curie-Paris, Paris ; David Filliat ; StÉphane Doncieux ; Jean-Arcady Meyer

In robotic applications of visual simultaneous localization and mapping techniques, loop-closure detection and global localization are two issues that require the capacity to recognize a previously visited place from current camera measurements. We present an online method that makes it possible to detect when an image comes from an already perceived scene using local shape and color information. Our approach extends the bag-of-words method used in image classification to incremental conditions and relies on Bayesian filtering to estimate loop-closure probability. We demonstrate the efficiency of our solution by real-time loop-closure detection under strong perceptual aliasing conditions in both indoor and outdoor image sequences taken with a handheld camera.

Published in:

IEEE Transactions on Robotics  (Volume:24 ,  Issue: 5 )