By Topic

Fusing Monocular Information in Multicamera SLAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joan Sola ; Centre Nat. de la Rech. Sci., Toulouse Univ., Toulouse ; Andre Monin ; Michel Devy ; Teresa Vidal-Calleja

This paper explores the possibilities of using monocular simultaneous localization and mapping (SLAM) algorithms in systems with more than one camera. The idea is to combine in a single system the advantages of both monocular vision (bearings-only, infinite range observations but no 3-D instantaneous information) and stereovision (3-D information up to a limited range). Such a system should be able to instantaneously map nearby objects while still considering the bearing information provided by the observation of remote ones. We do this by considering each camera as an independent sensor rather than the entire set as a monolithic supersensor. The visual data are treated by monocular methods and fused by the SLAM filter. Several advantages naturally arise as interesting possibilities, such as the desynchronization of the firing of the sensors, the use of several unequal cameras, self-calibration, and cooperative SLAM with several independently moving cameras. We validate the approach with two different applications: a stereovision SLAM system with automatic self-calibration of the rig's main extrinsic parameters and a cooperative SLAM system with two independent free-moving cameras in an outdoor setting.

Published in:

IEEE Transactions on Robotics  (Volume:24 ,  Issue: 5 )