By Topic

Limited-angle spatial compound imaging of skin with high-frequency ultrasound (20 MHz)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michael Vogt ; Institute of High Frequency Engineering, Department of Electrical Engineering and Information Technology, Ruhr-University, Bochum, Germany (e-mail: ; Helmut Ermert

In dermatology, high-frequency ultrasound (HFUS) is used for high-resolution skin imaging. The conventional B-scan type approach is to perform lateral scans perpendicular to the direction of sound propagation. Ultrasound spatial compounding enables improvement of the image contrast, suppression of speckle and noise, and reduction of imaging artifacts in comparison with conventional B-mode imaging, but it has not yet found its way into HFUS skin imaging applications. In this paper, the potential of HFUS spatial compounding for skin imaging is systematically evaluated. A new HFUS system with a sophisticated scanner for limited-angle (up to plusmn40deg) spatial compound imaging was developed and implemented. Echo signals are acquired using a 20 MHz spherically focused single-element transducer with an axial and lateral resolution of 69 mum and 165 mum, respectively, in the focus. A calibration scheme for the estimation of unknown system parameters and precise image reconstruction has been developed. The implemented system has been evaluated using measurements of geometrically well-defined structures, speckle phantoms, and in vivo measurements. The results show the advantage of the proposed spatial compound skin imaging concept compared with conventional B-mode imaging in terms of image contrast, isotropy, and independence from the orientation of surfaces.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:55 ,  Issue: 9 )