By Topic

Sigma-delta receive beamformer based on cascaded reconstruction for ultrasound imaging application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jia Hao Cheong ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Lam, Y.Y.H. ; Kei Tee Tiew ; Koh Liang Mong

A pre-delay reconstruction sigma-delta beamformer (SDBF) was recently proposed to achieve a higher level of integration in ultrasound imaging systems. Nevertheless, the high-order reconstruction filter used in each channel of SDBF makes the beamformer highly complex. The beamformer can be simplified by reconstructing the signal after the delay-andsum process with only one filter. However, this post-delay reconstruction-based design degrades image quality when dynamic focusing is performed. This paper shows that employing a simple pre-delay filter is sufficient to achieve similar performance as conventional pre-delay reconstruction SDBF, as long as the pre-delay filter provides the required pre-delay signalto- quantization noise ratio (SQNR). Based on this finding, we proposed a cascaded reconstruction beamformer that uses a boxcar filter as the pre-delay filter in each channel. Simulations using real phantom data demonstrate that the proposed beamforming method can achieve a contrast resolution comparable to that of the pre-delay reconstruction beamforming method. In addition, the hardware can be greatly simplified compared with the pre-delay reconstruction beamformers.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 9 )